
D
R

A
FTCleartext Password Elimination

David E. Tweten

September 22, 2000

D
R

A
FTAbstract

With the advent of sniffers and sniffer kits, it is no longer acceptable for durable
passwords to be used in cleartext form for user authentication across any net-
work, even the NAS internal LAN. This plan details a way to banish cleartext
passwords from the NAS net for the kind of authentication that is most vulner-
able to sniffers.

D
R

A
FT

Contents

Acknowledgments iii

1 Introduction 1

1.1 Background and Motivation . 1
1.1.1 Types of Authentication 2

1.2 The Problem, Real and Imagined 2
1.2.1 The Imagined Problem: Hostile Keyboard Monitors . . . 2
1.2.2 The Real Problem: Hostile Sniffers 3

2 Solutions 5

2.1 The Hardware Solutions . 5
2.2 The Software Solutions . 6

2.2.1 Kerberos . 6
2.2.2 S/Key . 6
2.2.3 Secure Shell (Ssh) . 7
2.2.4 The Secure Remote Password Protocol 8
2.2.5 Other Software Solutions 8

2.3 The Real Solution - A Software Mix 10

3 The Preferred Configuration 11

3.1 Unix Ssh Do and Don’t List . 11
3.1.1 Place Ssh Under /usr/prg, Not Under /usr/local 11
3.1.2 Enable X Forwarding . 11
3.1.3 Disable the IDEA Cipher 12
3.1.4 Enable DES . 12
3.1.5 Enable 3DES . 12
3.1.6 Build Ssh With libwrap 12
3.1.7 Build Ssh Without RSAREF on Government Machines . 13
3.1.8 Make Blowfish the Default Cipher 13

3.2 OPIE . 13
3.2.1 OPIE Calculators . 14

3.3 FTP . 14
3.3.1 Standard NAS FTP Configuration 14
3.3.2 Bastion Host FTP Configuration 15

i

D
R

A
FT

3.4 Macintosh Configuration . 15

3.5 Windows 95/98/NT/2K Configuration 16

4 The Usage Model 19

4.1 General Issues . 19

4.2 Trusted Unix Machines . 21

4.3 MacOS . 24

4.4 Windows 95/98/NT/2K . 25

4.5 Untrusted Machines . 27

5 The Tasks to be Performed 29

5.1 Install Ssh Protocol 1.5 Everywhere 29

5.1.1 Unix Configuration . 34

5.1.2 Personal Computer Configuration 35

5.2 Collect Public Machine Keys Automatically 35

5.3 Check Users’ Ssh Machine List 36

5.4 Distribute Helper Scripts . 36

5.5 Install Modified OPIE on Bastions 37

5.6 Educate Users . 37

5.7 Make Administration Utilities Work With Ssh 38

5.7.1 PCP Modification for Ssh 38

5.7.2 PBS Configuration for Ssh 38

5.8 Disable Cleartext Passwords . 38

5.9 Schedule . 39

A ISO 9001 Considerations 41

A.1 Software Project Characterization 41

A.1.1 Software Project Risk Classification 41

A.1.2 Software Project Cost Classification 41

A.1.3 Organizational Complexity Classification 42

A.2 Selected Development Controls 42

A.2.1 Development Approach 42

A.2.2 Documentation Plan . 42

A.2.3 Maintenance Plan . 42

A.2.4 Software Configuration Control 43

A.2.5 Change Request Tracking 43

A.2.6 Required Reviews . 43

A.2.7 Replication, Delivery, and Installation 43

Bibliography 44

ii

D
R

A
FT

Acknowledgments

In the lead-up to its ISO Software Project Plan Review meeting, this plan was
submitted to a variety of people for comment, both individually and by e-mail
list. Many responded with quite valuable suggestions that materially improved
this document’s quality. The individuals and e-mail lists appear in Table 1,
people first, in alphabetical order, and with asterisks after the names of those
who provided comments. Thank you, all.

iii

D
R

A
FT

Name E-Mail

Paul Allen* paul.l.allen@boeing.com
Louis J. Blazy Louis.J.Blazy@ivv.nasa.gov

Dave Boyle* dave.boyle@ae.ge.com
Randy Butler* rbutler@ncsa.uiuc.edu

Laura Carriere* laura@dao.gsfc.nasa.gov
Christine Cortez* ccortez@nas.nasa.gov

Roger Daniels* roger.daniels@ae.ge.com
James R. Fischer jfischer@pop900.gsfc.nasa.gov

Ken Freeman kfreeman@mail.arc.nasa.gov
Douglas M. Friedman* Douglas.Friedman@West.Boeing.com

Brian J. Glass bglass@arc.nasa.gov
Ken Hornstein* kenh@cmf.nrl.navy.mil

Matthew Jacob* mjacob@nas.nasa.gov
Richard Jaffe* jaffe@pegasus.arc.nasa.gov

Dennis C. Jespersen* jesperse@nas.nasa.gov
Bob Mohlenhoff* bmohlenhoff@mail.arc.nasa.gov

Nancy L. Palm Nancy.L.Palm.1@gsfc.nasa.gov
Tom Perrine* tep@sdsc.edu

Helmuth Pescador hpescador@mail.arc.nasa.gov
David Picasso dpicasso@mail.arc.nasa.gov
Harper Pryor harper@dao.gsfc.nasa.gov

John Ray jrray@mail.arc.nasa.gov
Dave Rudy* d.h.rudy@larc.nasa.gov

George R. Rumney II* rumney@amarna.gsfc.nasa.gov
Cathy Schulbach cschulbach@mail.arc.nasa.gov

Mike Stone*
Geoff M. Tennille* g.m.tennille@larc.nasa.gov

Linda Thompson* lthompson@jean-luc.arc.nasa.gov
Eugene Tu eltu@mail.arc.nasa.gov

Steve Tuecke* tuecke@mcs.anl.gov
Pam Walatka* walatka@nas.nasa.gov

Alex Woo* awoo@mail.arc.nasa.gov
hec-users-all@nas.nasa.gov
ssh-admin@nas.nasa.gov
ssh-users@nas.nasa.gov
user-group@nas.nasa.gov

Table 1: Pre-approval reviewers

iv

D
R

A
FT

Chapter 1

Introduction

This initial chapter covers some background, defines the problem to be solved
and gives a quick overview of the structure of the rest of this report so you can
decide which parts you need to read.

Chapter 2 tells why we chose the solutions we did and why we didn’t choose
the others. Chapter 3 defines in great detail how we intend to configure and
use the solution we chose. Chapter 4 describes the usage experience for Unix,
MacOS, and Windows users and for users accessing NAS resources from an
insecure machine. Chapter 5 describes the tasks that must be performed to
complete the project. Finally, Appendix A fulfills the requirements of NASA
Ames ISO 9001 procedures.

1.1 Background and Motivation

Authentication is the process of proving you are who you claim to be. You can
accomplish that by proving that you know something, by proving that you have
something, or by proving that you are something. In each case, “something”
is a thing previously known to the authenticating entity. Password authentica-
tion, cryptographic authentication, and zero-knowledge proofs all demonstrate
that you know something. Keys, whether mechanical or electronic, demonstrate
that you have something. Biometric authentication systems allow you to demon-
strate that you are something. Unix tradition is to demonstrate that you know
something, typically a password.

Passwords, /etc/hosts.equiv, and ˜/.rhosts files have been used for Unix user
authentication since the dawn of Unix time1, or the beginning of Unix network-
ing, as appropriate. They have accomplished two kinds of authentication, one
of which has recently become vulnerable to hostile sniffers. For the vulnerable
kind of authentication, we must now move on from password authentication to
something(s) less vulnerable.

100:00:00 GMT, January 1, 1970.

1

D
R

A
FT

1.1.1 Types of Authentication

For purposes of this project, there are two main types of user authentication,
local and remote. For local authentication, a user presents himself physically to
a user-trusted machine, proposing to use its directly-connected input or output
devices to communicate with programs running on that machine. Remote au-
thentication takes place when a program on the user-trusted machine, running
on behalf of the user, tries to convince another, network-connected machine that
it should grant the user access to its programs. There is a third situation of
interest, when there is no user-trusted machine available, but the user must still
authenticate himself to a distant machine. Methods of authentication appropri-
ate to each situation are not necessarily appropriate to the others, yet the Unix
community has thus far been using cleartext passwords for all.

For purposes of local authentication, a user can present himself to a ma-
chine’s console or to any terminal connected to the machine. Any of the three
basic proofs can be used for authentication.

Remote authentication is only possible by demonstrating that the user’s
machine “knows” something that should only be known to the user. The user’s
machine can’t demonstrate that the user has or is something because neither
the user nor his possessions are available to the remote authenticating machine
for examination.

If the user can’t trust the local machine being used to accomplish remote au-
thentication, then some sort of zero-knowledge proof must be used. Otherwise,
it would be possible for a hostile local machine to harvest the user’s knowledge
so someone else could later accomplish a fraudulent authentication.

In the current risk environment, traditional Unix means of authentication
are still sufficient for local authentication. They are no longer sufficient for
remote authentication, whether done through the services of a user-trusted local
machine, or not.

1.2 The Problem, Real and Imagined

To attack a password authentication system, you need to harvest users’ pass-
words. In principle, it ought to be possible to do so at any point after the users’
fingers strike a keyboard and until the password checking program destroys its
input. In fact, the risk can be made acceptably small within a properly config-
ured machine. The risk is not nearly so controllable once a cleartext password
is sent over a network.

1.2.1 The Imagined Problem: Hostile Keyboard Monitors

It is certainly possible to install keyboard monitor software on a machine. A
keyboard monitor is a program that reads anything typed by the user in parallel
with whatever program the user intended to receive his input. It is even possible
to “install” one remotely on poorly configured Unix X machines.

2

D
R

A
FT

Any privileged (root) program on a Unix machine can read kernel memory.
Users’ keystrokes are stored temporarily in kernel memory until the characters
can be delivered to the intended application. All a cracker has to do is gain
the ability to run as root on a target machine, and he can set up a keyboard
monitor. On many machines, it is sufficient to be able to run as a member of
the group, kmem. If anything, this is easier than setting up a sniffer.

It isn’t even necessary to be able to run as the root user or as a member
of the kmem group on many machines that run X. Many such machines are
configured to use so called “host” authentication rather than the more secure
“xauth” authentication. The X server on the user’s workstation “serves” access
to the user’s keyboard, mouse, and screen. Any X application running on a host
not excluded under “host” authentication or any application able to masquerade
as having come from such a host can read the X server’s keyboard without the
user’s knowledge. The obvious countermeasure is to use “xauth” authentication
on all X servers.

Though possible and easy to install, keyboard monitors aren’t usually attrac-
tive to system crackers because they are only capable of harvesting passwords
from users of the machine on which the monitor is installed. Where users have
individual workstations, that boils down to one password per keyboard monitor.
Only circumstances where many different people use the same keyboard (such
as a courtesy workstation at a conference) offer sufficient payoff to a cracker to
justify installation of a keyboard monitor. A separate solution for this circum-
stance is covered in Section 2.

1.2.2 The Real Problem: Hostile Sniffers

A “sniffer” is a privileged program running on a network-connected machine,
listening to traffic on the attached network. For a sniffer to be effective, the
network must function as a party line, that is to say messages to or from a
given machine must also be available to other machines on the network. For
a sniffer to be effective, it must be possible to make its network adapter listen
to messages not addressed to it. Finally, in some circumstances, it may be
necessary for the hardware network address of the adapter to be controllable
by the attached machine. Sniffers are valuable tools for network and security
administrators to use to diagnose activity on a network. Their installation is
also a popular activity for crackers, once they have managed to run as the root
user on a compromised machine.

Some of our networks seem not to be party-line networks. Certainly, the
HiPPI network is a strictly point-to-point network, and it does not offer any
machine the opportunity to observe messages being sent to other machines.
Certainly, the classic coaxial Ethernet, and the more modern hub architecture
are both party-line networks. So is FDDI. It is probably less well known that
switched Ethernets must also be regarded as party-line networks. Switches are
intended to send each packet only to the switch port to which it is addressed,
however, while a switch is trying to determine the addresses of the Ethernet
adapters connected to each of its ports, it broadcasts packets to all ports. It

3

D
R

A
FT

is therefore only necessary to confuse a switch enough to put it into broadcast
mode, converting it into a hub, in order to make a switched Ethernet a party-
line network. If a cracker has privileged enough access to a machine to let him
install a sniffer, he has the access required to convert a connected switch into a
hub.

Promiscuous read mode is widely available on Ethernet and FDDI network
adapters. In order to support multi-cast mode operation, software control over
an adapter’s hardware address is also widely available. With the ability to
change an adapter’s address comes the ability to flood a switch and turn it into
a hub.

All the necessary technology is widely used. The sniffer software itself and
the tools to install it are available from many sites over the Internet. Once a
cracker has installed a sniffer he is able to harvest the passwords of all the users
of all the machines on the attached subnet. The cracker’s sniffer cost is about
the same as his keyboard monitor cost but the payoff is much larger. That is
why sniffers are a problem, and keyboard monitors generally are not.

4

D
R

A
FT

Chapter 2

Solutions

The essential element of any solution is to give sniffers nothing of interest to
look at. The hardware version of the solution is to make sure that the portion
of the network that reaches each machine carries only packets intended for that
machine. The software version of the solution is to authenticate using some
technique other than cleartext, multiple-use passwords, and to encrypt any data
channel that might carry a cleartext multiple-use password.

2.1 The Hardware Solutions

Two networking hardware technologies in use at the NAS can ensure that only
network packets intended for a machine will be readable by that machine. HiPPI
is a strictly switched network with static routing information embedded in its
switches. Switched Ethernet is also capable of being configured to ensure that
only packets intended for a machine can reach it. Both technologies have prob-
lems. The other major networking hardware technologies available are FDDI
and Ethernet hubs, and they are both party-line technologies.

HiPPI is a relatively old, very high performance, low production volume,
high-cost technology. Its switches need to be statically configured with routing
information. Administration difficulty, overall cost, and particularly cost per
client machine all conspire to make it very unlikely that our HiPPI network will
be expanded enough to solve the sniffer problem.

Switched 100 megabit Ethernet can be configured to solve the problem. It
is a new, high performance, high production volume, low-cost technology. By
configuring it to drop any machine that changes its hardware Ethernet address,
this technology can solve the sniffer problem. Unfortunately, by configuring
switched Ethernet to drop machines that change their Ethernet addresses, one
defeats multi-cast, a promising new networking technology, and increases the
administrative load considerably.

The more popular configuration is to let the switch operate as a hub for
any address it doesn’t recognize, and to act as a switch for addresses for which

5

D
R

A
FT

it has a port mapping. Port mappings are created by observing the Ethernet
source addresses of incoming packets on each port. Our Ethernet switches are
configured to detect new hardware Ethernet addresses, and to put them into
the port translation tables. A compromised client of a switch need only flood it
with enough Ethernet hardware address updates to flush other machines’ entries
from the port mapping table. That way, the switch will act as a hub and sniffing
becomes possible.

Clearly, neither possible hardware solution is acceptable in our environment.

2.2 The Software Solutions

There are many available software solutions. Kerberos authenticates users both
to local and to distant machines without ever trusting the networks involved.
The S/Key protocol uses a different cleartext pass phrase for each authentica-
tion, so eavesdroppers only get pass phrases that will be useless to them in the
future. Ssh uses public-key and private key cryptography to perform remote
authentication and to protect communications channels that may carry pass-
words. These are only the most mature software solutions. There are many
more.

2.2.1 Kerberos

Lack of proven scalability is the major problem with most of the newer possible
software solutions. Though Kerberos is not new[26, 10], it too suffers from that
problem. For Kerberos to work, each machine must be assigned a unique secret
key. That key must also be known to a central Kerberos “ticket-granting” server.
Because it has all the secret keys, the central server must be kept very secure.
Only the Kerberos administrator should have access to it. That means that the
Kerberos administrator has to assign machines their secret keys; nobody else
can be permitted to get close enough to the central server to perform the task. It
is also the case that each central server, and backup server(s), form a Kerberos
“domain.” Machines from different Kerberos domains can’t authenticate users
to each other unless their central servers are explicitly configured to do so. The
limiting problem with Kerberos is scalability of administration.

2.2.2 S/Key

S/Key[7] hashes a user-provided hidden pass phrase to create a “first” usable
pass phrase, and then hashes each usable pass phrase with the same algorithm
to create the next. This pass phrase list creation takes place in advance of use,
and under secure conditions. The creating machine only remembers the last
pass phrase and its number within the sequence.

The actual list can be printed out for the user to carry around in wallet or
purse. There are also S/Key calculators that can convert the hidden pass phrase
and the sequence number of the desired usable pass phrase into the actual pass

6

D
R

A
FT

phrase. Laptop computers, personal digital assistants and programmable pocket
calculators all have S/Key calculator software available for them, often at no
cost.

When the user tries to log into a machine that knows his “last” S/Key pass
phrase and its sequence number, it will ask the user for the previous key in
the sequence. The user can either enter it from his printed list, or calculate it
from the hidden pass phrase. When the user enters the requested pass phrase,
the machine runs the hash for one step and checks the result against the pass
phrase it has been saving, the next one in the sequence. If the comparison
is successful, the machine replaces the old pass phrase with the new one and
reduces its remembered sequence number by one.

OPIE (One-time Passwords In Everything)[14] is a public domain software
package that implements the S/Key protocol. It demands that password list
creation be done the first time from the console of the S/Key-protected machine.
Replacing the current list with a new (and longer) one can be done securely with
OPIE at a distance. OPIE is obviously intended for use at a workstation. For
our purposes, this is too restrictive. We need to modify OPIE to permit first-list
creation within an enciphered session. Other than this one weakness, OPIE will
serve well to allow people to log in securely from an insecure machine (such
as a workstation in a workstation-room at a conference). Fortunately, OPIE is
open-source software so the change can be made.

2.2.3 Secure Shell (Ssh)

Ssh replaces the functionality of the Berkeley Standard Distribution (BSD) Unix
r commands, rsh, rcp, and rlogin, to permit, respectively, remote command exe-
cution, remote file transfer, and remote login sessions. It can also be stretched to
support enciphering the command channel of the Internet standard File Trans-
fer Protocol (FTP) programs. FTP performs all (password) authentication over
its command channel and transfers data over a separate data channel.

Ssh is broadly configurable. It can be made to perform user authentication by
transferring passwords over an enciphered channel, by authenticating the user’s
machine using public key cryptography and then accepting the user, based upon
/etc/hosts.equiv or ˜/.rhosts files, or by directly authenticating the user using
his own public key pair. There are several other variations.

The main problems with Ssh are legal and regulatory. The open source
version (implementing Ssh protocol version 1.5) must be configured carefully
and used carefully to remain on the right sides of intellectual property law and
Federal regulations.

The main advantage of Ssh over Kerberos (for example) is that it can be
made scalable from an administration point of view, at the cost of failure to
achieve provable immunity to a Man in the Middle (MIM) attack. By contrast,
there is no practical way to improve administration scalability for Kerberos.
An attractive approach is to collect Ssh machine public keys randomly, and to
investigate machine public key changes. Those two measures make a MIM attack
very difficult and very easy to detect. The amount of administration effort can

7

D
R

A
FT

then rise linearly with the number of machines administered and can be done
by many different administrators. There is also no single central treasure chest.
Ssh’s valuable information is dispersed across all involved machines.

2.2.4 The Secure Remote Password Protocol

Secure Remote Password (SRP) Protocol[30] is an open source authentication
protocol. As a byproduct, it yields a secure shared session key that can be
used to encipher session traffic. Reference implementations are available from
Stanford University1. They come in Unix and Windows versions, but not in a
MacOS version. They are implemented in C and Java, and support telnet and
ftp, but they have no functionality like rcp, rsh or X11 port forwarding2. The
author has made proposals to the Internet Engineering Task Force (IETF) and
to the Institute of Electrical and Electronic Engineers (IEEE) P1363 Working
Group.

SRP is promising, but immature. It also appears that the user’s first intro-
duction to each computer has to be face-to-face, in order to provide it with the
necessary authenticating information. In this respect, it is similar to unmodified
OPIE.

2.2.5 Other Software Solutions

Other software solutions are available for at least some part of our problem.
None of these solve enough of it to make the cut.

OpenSSH

OpenSSH is a product of the OpenBSD3 project. It is based upon Ssh ver-
sion 1.2.12, which was the last completely unencumbered release of Ssh. It has

1SRP is available from its own Stanford University web site. http://srp.stanford.edu/

srp/
2In this context “ports” are numbers used together with an IP address to specify one end

of a TCP/IP communication channel. Ports come in privileged and unprivileged forms. Ports
1024 and above are unprivileged and can be acquired by programs running as an unprivileged
user. Lower numbered ports can only be acquired by programs running as root.

Port forwarding is a capability of Ssh. If some program makes a TCP connection to a
forwarded port, Ssh will connect to the IP address and port specified for the other end and
do so from the far end of the active ssh command. The forwarded port is bidirectional and
enciphered.

Ssh supports three kinds of port forwarding: authentication agent port forwarding, X11
port forwarding, and arbitrary port forwarding. Authentication agent port forwarding allows
a distant Ssh daemon attempting to connect to an authentication agent to be put in touch with
the authentication agent that is the parent of the user’s shell on his workstation, eliminating
the need to expose the user’s secret RSA authentication key. X11 port forwarding similarly
forwards connections on the distant machine back to the X11 server on the user’s workstation.
Finally, arbitrary ports can be forwarded from the user’s workstation to the distant machine
or visa versa.

3More information on OpenSSH and other aspects of the OpenBSD project are available
at their web site. http://www.openbsd.org/

8

D
R

A
FT

been upgraded to use Ssh protocol version 1.5 or version˜2.0 (instead of ver-
sion 1.3, as used by its Ssh parent). It includes many feature additions, and it
should be treated as a less used alternative to Ssh 1.2.27. One of its features
beyond Ssh 1.2.27 is incorporation of the S/Key protocol, a welcome feature on
the bastion hosts.

Unfortunately for OpenSSH, the license encumbrances of Ssh 1.2.27 don’t
affect us. Also, OpenSSH is not as completely developed as is Ssh 1.2.27, but
it comes standard on current releases of OpenBSD and FreeBSD, and possibly
other free Unix systems as well.

LSH

LSH4 is a GNU5 implementation of Ssh protocol version 2.0. As a GNU imple-
mentation, it overcomes the licensing problems of Ssh protocol version 2.0 for
Unix, but it offers no help with MacOS or Windows, though it will work with
F-Secure versions 2.x and above.

As was recently pointed out on the LSH web site, “LSH IS A WORK IN
PROGRESS. DON’T EXPECT THE CURRENT VERSION TO WORK, AND
DON’T EXPECT IT TO PROVIDE ANY SECURITY WHATSOEVER.”

OSSH

OSSH version 1.5.56 is a modified version of Ssh 1.2.12. Its main claim to fame
seems to be that it supports the Andrew File System (AFS) and Kerberos IV
authentication for Unix. It is being actively supported. It doesn’t seem to have
any advantages for us.

Secure Socket Layer

The Secure Socket Layer (SSL) is the most commonly known of a family of
protocols whose most recent member is called the Transport Layer Security
(TLS) Protocol[4]. SSL versions 2.0 and 3.0 and TLS version 1.0 inter-operate.
One widely available open source implementation is OpenSSL7.

While SSL is commonly used with web browsers for Internet commerce, there
doesn’t seem to be much in the way of remote session, remote file transfer, and
X11 support outside the web browser world. SSL authentication on the web
typically involves authenticating a web site to a browser implementation, not
authenticating the user to a distant machine. SSL would also involve acquiring
identity certificates for users from a Certificate Authority (CA).

4More information about LSH, including pointers to source code, is available at the LSH
web site. http://www.net.lut.ac.uk/psst/

5GNU stands for “GNU’s Not Unix.” http://www.gnu.org/
6OSSH is available by FTP from Bjoern Groenvall’s site. ftp://ftp.pdc.kth.se/pub/

krypto/ossh/
7More information and source code are both available at the OpenSSL web site. http:

//www.openssl.org/

9

D
R

A
FT

Grid Security Infrastructure

Globus offers a secure ftpd and its coupled ftp utility and a set of modifications
to Ssh 1.2.27 that all exploit its Grid Security Infrastructure (GSI)8. This is the
direction we are going, with the Information Power Grid, but we’re not there
yet.

GSI requires a considerable infrastructure in addition to Ssh and gsiftp them-
selves. A CA is required to issue the certificates used with GSI. User access con-
trol lists must be maintained. The FTP daemon has to be replaced on machines
to be reached by gsiftp. There is enough additional infrastructure required to
use GSI that it is unattractive without Globus, and it is currently immature to
boot. This is the direction the Information Power Grid is going. This makes a
good future candidate for a parallel implementation as it matures.

2.3 The Real Solution - A Software Mix

The need to authenticate users to remote machines without the use of cleartext
passwords can most easily be met in the NAS environment by a combination of
two software solutions, OPIE and Ssh.

Ssh will cover all situations where the user can initially log onto a machine
he can trust. That machine will contain Ssh software, the machine’s own public
key pair, and possibly the user’s public and encrypted private keys. The user’s
encrypted private key, and the need to decrypt it is one reason why the machine
must be worthy of trust. From this trusted machine, Ssh will let the user launch
secure (enciphered) login sessions and file transfers, and cleartext file transfers
(where performance is more important than the need to prevent eavesdropping
on the data).

OPIE will cover situations where no trustworthy machine is available, but
it is still necessary to authenticate the user to secure NAS machines without
the risk of password theft. It will support insecure login sessions (where the
content of the session can be the subject of eavesdropping) and cleartext file
transfers. Authentication will be secure and there will be no opportunity for
effective password theft.

It is important to realize that the choice of OPIE and Ssh in no way rules
out parallel implementation of other secure authentication schemes. OPIE and
Ssh are merely the minimum set of capabilities required to replace the function
previously performed by cleartext passwords. Before choosing to implement
parallel alternatives, though, one should consider the analogy of a walled city.
Each authentication system is a guarded gate in the wall. More gates are more
convenient than are fewer gates. Unfortunately, more gates are also harder to
defend, and more gates stretch security efforts thinner than do fewer gates.
Before adding more schemes, one should consider their effect upon the balance
between convenience and security.

8For more details, consult the GSI web page. http://www.globus.org/security/v1.1/

index.htm##gsiftp

10

D
R

A
FT

Chapter 3

The Preferred
Configuration

The combination of Ssh and OPIE necessary to protect passwords from sniffing
is pretty straightforward. For Ssh itself it consists of a collection of required and
prohibited capabilities. There is an OPIE modification element. One system
configuration applies to Bouncer and Bruiser (the bastion hosts). Another con-
figuration applies to all other Unix machines. Other configurations of Ssh and
OPIE-enabled FTP clients apply to Macintoshes and to Windows machines.

3.1 Unix Ssh Do and Don’t List

Unfortunately, cryptography is hot from political and property rights points of
view, and Ssh uses cryptography. As a result, configuration decisions for Ssh
must be made for non-technical reasons as well as for technical ones.

3.1.1 Place Ssh Under /usr/prg, Not Under /usr/local

This may not apply to Unix machines that are not supported by the NAS Sys-
tems Division. NAS-supported Unix machines generally mount /usr/local from
file servers, over the Network File System (NFS). NFS is notoriously insecure
with respect to sniffers, so it makes no sense to expose sensitive Ssh files to the
tender mercies of NFS. On any machine that remote mounts /usr/local, put Ssh
somewhere else, like /usr/prg.

3.1.2 Enable X Forwarding

This is an obvious requirement for Unix machines that support an X server. X
forwarding provides an encrypted channel for any windows on the local server
that were opened from a distant client that, in turn, was started through the
services of Ssh. Somewhat less obvious is that X forwarding should be enabled

11

D
R

A
FT

on Unix machines, such as von Neumann, that do not also support X servers.
The reason is that a user may log in through the services of Ssh from an X-
equipped workstation, and then use Ssh to launch an X client on a third machine.
If X forwarding is not enabled on the middle machine, the window from the
third machine may not be displayable on the first machine’s X server, or worse,
may not be encrypted in transit. It is important for remote X windows to be
encrypted in transit, since the keyboard input sides of such windows can carry
passwords (for su or sudo sessions, for example).

3.1.3 Disable the IDEA Cipher

The International Data Encryption Algorithm (IDEA)[11] is a technically sound
cipher. It is fast. In spite of a good deal of trying to crack IDEA, the open
literature[2, 3, 16] testifies that it is cryptanalytically robust. Unfortunately,
intellectual property law makes it unattractive. IDEA has been patented[13, 12]
by a Swiss firm. Getting a license for U.S. Government use is just too much of
a bother, given that there is an alternative.

3.1.4 Enable DES

The Data Encryption Standard (DES)[19] is a technically unsound cipher. It is
slow when implemented in software. Several papers[5, 8, 15, 29] and a book[6]
have been published outlining ways to crack it efficiently. There would be no
need to use it at all, except for regulations. NASA regulation NPG 2810.1[20,
Section 4.11.2(e)1] requires that if a decision is made to encipher data, the DES
“technique” (or 3DES) must be used “to protect data during telecommunica-
tions processes.” It is therefore necessary to enable DES so users can specify it
when they use scp to transfer data they believe should be enciphered in transit.

3.1.5 Enable 3DES

Triple DES (3DES)[19] is a technically sound cipher. 3DES amounts to applying
the DES cipher to the cleartext, applying it again to the resulting ciphertext
but using a different key, and repeating the process with a third key. This is the
cipher of choice for those who worry that DES is too fast. There would be no
need to use it at all, except for regulations. NASA regulation NPG 2810.1[20,
Section 4.11.2(e)1] requires that if a decision is made to encipher data, the 3DES
“technique” (or DES) must be used “to protect data during telecommunications
processes.” It is therefore necessary to enable 3DES so users can specify it when
they use scp to transfer data they believe should be enciphered in transit.

3.1.6 Build Ssh With libwrap

Libwrap is a library that implements the TCP Wrapper[28]. TCP Wrapper
controls incoming access to TCP and IP ports through a configuration file.
It prevents access from certain hosts, or logs accesses from certain hosts, or

12

D
R

A
FT

from whole classes of hosts. The desired actions are specified in each machine’s
configuration file. Building with libwrap allows Ssh’s well-known port to be
controlled even though sshd must run stand-alone1.

3.1.7 Build Ssh Without RSAREF on Government Ma-
chines

Ssh uses the RSA[22] public key algorithm. It is patented[23]. Fortunately for
NASA, the research that resulted in the RSA algorithms was funded in part by
the U.S. Government, and as a result, the Government has a free license2. Non
Government-owned machines aren’t covered. Therefore, if you build Ssh for a
non Government-owned machine, you must use RSAREF. RSAREF is an RSA
demonstration library, made freely available by the patent holders. It is slower
than the RSA implementation included with Ssh, but is useful until September
20, 2000 to avoid patent infringement on other than Government machines.

If you must build with RSAREF, be aware that you will have to apply the
patches3 provided by the Computer Emergency Response Team (CERT).

3.1.8 Make Blowfish the Default Cipher

Blowfish[24] is a technically sound cipher. Its implementation and IDEA’s are
the two fastest in Ssh. Many cryptanalysts have tried and the open literature[25,
21, 27] chronicles nothing but failed attempts to crack it. For password protec-
tion, it is the clear winner. For regulatory reasons, though, users still ought to
specify the scp option to use DES or 3DES when transferring data they believe
should be enciphered in transit.

3.2 OPIE

OPIE will run on the bastion hosts, Bouncer and Bruiser. As it comes in
the distribution4, OPIE requires that the user specify his first set of one-time
passwords from the system console. That is not acceptable in our environment.

1TCP Wrapper works in one of two ways. Daemons that do not have to provide service
too frequently, or that do not have an exorbitant start-up cost can be started on demand
by inetd. TCP Wrapper can then exercise access control through inetd ’s configuration file,
/etc/inetd.conf. Daemons that don’t work well with inetd must be started independently, and
must be permitted to run continuously. Independent daemons must be built with the libwrap
library in order to be controllable by TCP Wrapper.

Sshd can’t be started by inetd because it has to spend significant time computing a public
key pair as its first order of business.

2“The Government has rights in this invention pursuant to Contract No. N00014-67-A-
0204, awarded by the Department of the Navy, and Grant No. MCS76-14249, awarded by the
National Science Foundation.”[23, Government Interests section]

3The RSAREF patch is available directly from CERT/CC by FTP at ftp://ftp.core-
sdi.com/pub/patches/rsaref2.patch, or by HTTP. http://www.cert.org/advisories/

CA-99-15/rsa-patch.txt The Ssh patch is also available directly from CERT/CC.
http://www.cert.org/advisories/CA-99-15/ssh-patch.txt

4OPIE version 2.32 is available from The Inner Net. http://www.inner.net/pub/opie

13

D
R

A
FT

Host Type URL
Unix None required: opiekey(1) is part of the OPIE package.

Macintosh http://www.ja.net/CERT/Software/OPIE/contrib/macopie-1.1.hqx
http://www.ja.net/CERT/Software/OPIE/contrib/OPIEcalc.sit.hqx

Windows http://www.inner.net/pub/opie/contrib/WinKey21.exe
tcl/tk http://www.inner.net/pub/opie/contrib/opie.tk-v2.3.gz

Palm Pilot http://www.inner.net/pub/opie/contrib/pilOTP.zip
HP-48 http://www.inner.net/pub/opie/contrib/skey-hp48.tar.gz

Table 3.1: Available OPIE calculator programs

Instead, OPIE must permit initial password set creation from an Ssh connection.
There is no additional requirement for OPIE on Bouncer to honor a password
list generated by OPIE on Bruiser, or vice versa. OPIE on the bastion hosts
will support ftpd, rlogind, and telnetd. Rlogind and telnetd will permit people
to authenticate their interactive sessions securely from locations that have no
secure computers (such as conferences). Bouncer and Bruiser each have about 50
gigabytes of temporary space in their respective (and aptly named) /nobackup
file systems available for use by OPIE and ftp.

3.2.1 OPIE Calculators

OPIE calculators, such as those listed in Table 3.1 are a good alternative to a
printed list of one-time pass phrases. Instead of having to refer to a printed list,
a user who has an OPIE calculator need only enter his hidden pass phrase and
the OPIE sequence number; the calculator then returns the currently required
one-time pass phrase. References to to all known OPIE calculators will be
placed on the NAS Computer Security web page as a user education measure.

3.3 FTP

There will be two different configurations of ftpd across the set of NAS machines.
One configuration will apply to the bastion machines, Bouncer and Bruiser. The
other will apply to all other NAS machines.

3.3.1 Standard NAS FTP Configuration

All NAS machines except the bastion hosts, Bouncer and Bruiser, will be con-
figured to permit connection to their copies of ftpd only from their own IP ad-
dresses. This restriction will be accomplished using TCP Wrapper and is part of
ensuring that the FTP command channel is enciphered. Each /etc/hosts.allow
file must accept connections from IP addresses corresponding to any actual net-
work adapter attached to the machine. There is no harm in also allowing con-
nections from localhost (127.0.0.1), though it can’t be used with Ssh to protect
the FTP command channel.

14

D
R

A
FT

The reason for restricting ftpd access is to ensure that the command channel
for any FTP session is not vulnerable to sniffing. Though an actual, cleartext
connection from an FTP client on the local host will be possible, it won’t be
very useful, and it is not the intended use of the local connection. Local connec-
tions are intended to come from the local copy of sshd, as a result of Ssh port
forwarding. Since the process can be a little tricky, port forwarding will most
often be invoked by the FTP helper script discussed in Section 5.4, rather than
directly by the user.

3.3.2 Bastion Host FTP Configuration

Bouncer and Bruiser will have to make FTP transfers to and from machines
both inside and outside the NAS network. Inside transfers will be necessary to
support large files whose security requirements include little concern for eaves-
dropping. Outside transfers will be necessary to support the file transfer needs
of those who are connecting from an insecure machine. Therefore, on Bouncer
and Bruiser only, connection to ftpd will be permitted from all IP addresses,
and ftpd will be configured to use one-time passwords.

3.4 Macintosh Configuration

The NAS standard Macintosh configuration will be NiftyTelnet 1.1 SSH r3, a
freeware product5. Now that the RSA patent[23] has expired, everyone can use
NiftyTelnet without patent licensing problems. Other alternatives are:

• The commercial product, F-Secure6 version 1.1, build 15 provides ssh
session and remote shell service. Do not substitute F-Secure versions 2.x.
That series of products uses incompatible protocol version˜2.0. Versions˜3.x
of F-Secure are reputed to work with either protocol. The free software
package, Fetch 3.0.37provides OPIE and Ssh-assisted FTP file transfer
(since scp support is missing from F-Secure 1.1). No OPIE calculator is
needed because Fetch has one built in.

• BetterTelnet version 2.0fc18 offers features similar to F-Secure. The cur-
rent release has finally replaced the buggy pre-release. Little is known
about reliability. Fetch is also required with this choice.

5NiftyTelnet 1.1 SSH r3 is available from Jonas Wallden’s web site. http://www.lysator.

liu.se/~jonasw/freeware/niftyssh/
6F-Secure is available from F-Secure Corporation, formerly known as Data Fellows, Ltd.

They are reachable at 675 N. First Street, Suite 605, San Jose, CA 95112. Their phone
is (408) 938-6700, and they have a FAX at (408) 938-6701. They also have a web site.
http://www.fsecure.com/

7Fetch is available from Dartmouth University. http://www.dartmouth.edu/pages/

softdev/fetch.html
8Better Telnet is available from Rolf Braun’s web site. http://www.cstone.net/~rbraun/

mac/telnet/

15

D
R

A
FT

Macintosh users with NiftyTelnet who want the file transfer performance ad-
vantage of FTP over scp (and who don’t mind that FTP gets that performance
advantage by leaving their data in cleartext) should also have Fetch installed on
their machines. Those who need Ssh secure port forwarding should also have
F-Secure 1.1 installed, since NiftyTelnet doesn’t support that feature. Neither
F-Secure nor any other Ssh package for the Mac supports authentication port
forwarding or authentication agents.

3.5 Windows 95/98/NT/2K Configuration

The NAS standard Windows configuration will come in two parts.

The Ssh element is the Tera Term (pro) SSH (TTSSH) extension Dynamic
Link Library (DLL), version 1.5.19. It is a public domain package that gives Tera
Term (Pro), version 2.310, Ssh-enhanced telnet capability. It supports RSA,
RhostsRSA, and password authentication. It also supports X port forwarding
and arbitrary port forwarding, making secure FTP possible in conjunction with
LeechFTP. Since it is built using RSAREF, it causes no intellectual property
rights problems on non-Government machines. Usage documentation is at its
web site. TTSSH does not have an scp capability. It does not include any
means of key pair creation, though it does accept keys created under Unix by
ssh-keygen.

LeechFTP 1.311 provides FTP file transfer (since scp support is missing from
TTSSH).

Other alternatives exist.

• The commercial product, F-Secure6 version 1.1, build 15 has capabili-
ties similar to TTSSH. It has its own key generation component, unlike
TTSSH. Its port forwarding feature is picky about port numbers, making
secure FTP set up slightly less convenient then with TTSSH.

• SecureCRT 3.0.312 is a commercial product that supports interactive Ssh
connections under both Ssh protocol version 1.5 and version 2.0. It also
supports X port forwarding and arbitrary port forwarding, making secure
FTP possible in conjunction with LeechFTP. SecureCRT does not have
an scp capability.

9TTSSH is available at Robert O’Callahan’s web site. http://www.zip.com.au/

~roca/ttssh.html The release files are signed by a PGP key for “Robert O’Callahan
<roc+@cs.cmu.edu>”, a 1024-bit key with the PGP fingerprint, 54 3D 18 28 5F 47 EA
C2 B3 CC FB FB 8B 9B 26 53.

10Tera Term (Pro), version 2.3, is available at the Tera Term web site. http://www.vector.

co.jp/authors/VA002416/teraterm.html
11LeechFTP is available directly from the author, Jan Debis, on his web page. http:

//stud.fh-heilbronn.de/~jdebis/leechftp/
12SecureCRT is a product of Van Dyke Technologies. It is available for download directly

from the company’s web site. http://www.vandyke.com/

16

D
R

A
FT

• There is a straight Ssh 1.2.24 port13 of the interactive login capability of
ssh. There is little information available and the port has significant loose
ends.

• PuTTY14 is a public domain Ssh client package for Windows that offers
both an Ssh enhanced telnet client and scp client functionality. Unfortu-
nately, it has little documentation. Also, it does not use RSAREF, making
it unsuitable for use on non-Government owned machines.

13The port is available at Gordon Chaffee’s web site. http://bmrc.berkeley.edu/people/

chaffee/winntutil.html##sshnt
14“It’s called PuTTY partly because it makes Windows usable.” PuTTY is available directly

from Simon Tatham’s web site. http://www.chiark.greenend.org.uk/~sgtatham/putty/

17

D
R

A
FT

18

D
R

A
FT

Chapter 4

The Usage Model

This chapter outlines the intended user experience that will result from the pre-
ferred configuration of Ssh, OPIE, the associated configuration files, and the
helper scripts. The experience will differ with the user’s situation. Users on
NAS Unix machines and on non-NAS Unix machines they trust will have one
sort of experience. Macintosh usage will be a bit different, as will Windows
usage. Finally, users of untrusted machines (such as a workstation in a confer-
ence workstation room) will have yet another experience. Each aspect of the
experience is handled separately.

4.1 General Issues

The following paragraphs cover general issues associated with each aspect of the
usage model.

Introduction

The introduction problem is different for OPIE and for each Ssh authentication
method. Three authentication methods will be available under the Ssh pro-
tocol, RhostsRSA, RSA, and password. Password authentication is the most
straightforward and the least convenient, and Ssh tries it last. No introduction
is required to use it. RSA with an authentication agent is the most convenient
but requires some set-up by the user, and Ssh tries it second. RhostsRSA is
mid-way between the other two in both subtlety and convenience, and Ssh tries
it first.

For RSA authentication to work, the user must have made himself a personal
key pair, and a copy of the public half must be stored in ˜/.ssh/authorized keys
on the destination Unix machine. For RhostsRSA authentication to work, the
user’s machine must have a public key pair, and a copy of the public half must
be stored either in etc/ssh known hosts1 or in ˜/.ssh/known hosts on the desti-

1The exact leading portion of the path depends upon how Ssh is configured. Using the

19

D
R

A
FT

nation Unix machine. On multi-user machines, public keys for other multi-user
machines should be stored in etc/ssh known hosts to avoid repetitive storage in
every user’s ˜/.ssh/known hosts file and to permit centralized updates.

For OPIE, the introduction problem is the problem of how to create the
user’s first set of one-time passwords. For Ssh, the introduction problem is the
problem of how to store the required public keys in the right places. There
is no introduction problem for password authentication, but there is one for
RhostsRSA and RSA authentication methods.

Machine Key Pair Creation

The machine key pair required for RhostsRSA authentication must be created
before the user’s machine can be introduced. This must be done once for each
machine. Each machine’s key pair must be unique.

User Key Pair Creation

The user key pair required for RSA authentication must be created before the
public half of it can be added to ˜/.ssh/authorized keys on all machines the user
wishes to contact using RSA authentication. This should be done once for each
identity the user wants. Presuming he is not suffering from multiple personality
disorder, one pair should suffice.

Logging In Remotely

This is the equivalent of launching a telnet or rlogin session on the user’s ma-
chine, with the target being a NAS Unix machine.

When logging in from outside the NAS network, if the NAS host’s TCP
Wrapper configuration forbids connections from non-NAS hosts, it may be nec-
essary to “bounce” a connection through one of the bastion hosts, Bouncer or
Bruiser. “Bouncing” means either logging in to the bastion and then logging in
to the destination host from there, or it means executing the Ssh equivalent of
the compound command, “rsh bastion rlogin destination”.

Remote Execution

This is the equivalent of launching an rsh command on the user’s machine with
the target being a NAS Unix machine.

“Bouncing” works the same way for remote execution as for logging in.
One can either log into a bastion host and do remote execution from there, or
execute the equivalent of the compound command, “rsh bastion rsh destination

command”.

recommended configuration for NAS machines, the full path name for ssh known hosts would
be /usr/prg/etc/ssh known hosts. The Ssh default is /usr/local/etc/ssh known hosts. On
machines that don’t NFS mount /usr/local, the Ssh default is perfectly okay.

20

D
R

A
FT

Port Forwarding

There are three kinds of port forwarding, X11 port forwarding, Ssh authenti-
cation agent port forwarding, and arbitrary port forwarding (which is used to
protect the FTP protocol’s command channel). Port forwarding can be done in
conjunction with an Ssh command to log in, or to execute a command remotely.

“Bouncing” an arbitrarily forwarded local port is tricky because the for-
warded port can’t be used until the second stage connection has been com-
pleted, but the compound command has to be executed in the background so
the application that is going to use the port can run. By contrast, “bouncing”
either an X11 port or an authentication agent port is easy.

Enciphered File Transfer

This is the equivalent of launching an rcp command on the user’s machine with
the target being a NAS Unix machine. NASA regulations[20, Section 4.11.2(e)1]
require that the DES or 3DES ciphers be used if enciphering is necessary.

“Bouncing” works a little differently. It is necessary to remotely execute
the file transfer command on the NAS host. That might produce a compound
command equivalent to “rsh bastion rsh destination rcp source sink”.

Cleartext File Transfer

This is the equivalent of launching an ftp command on the user’s machine with
the target being a NAS Unix machine. The FTP protocol uses two connections,
one for commands (and passwords) and the other for data. Although the data
may be transferred in the clear, the passwords sent over the command channel
must be protected.

“Bouncing” works differently for each user situation.

Reversed Operations

Reversed operations are any of the previously discussed operations, but con-
ducted from a NAS Unix machine and with the user’s machine as the destina-
tion, instead of the other way around.

4.2 Trusted Unix Machines

This class of machine will be the easiest to use. Once it is properly set up, a
NAS-supported or user-trusted Unix machine should be as convenient to use as
a relatively insecure Unix machine. It should be capable of both initiating inter-
actions with other machines and of being the target of an interaction launched
from another machine. Individual issues are outlined below:

21

D
R

A
FT

Introduction

RhostsRSA introduction is handled automatically for Unix machines on the
NAS network and for those additional Unix machines whose users have asked
that they be included. These machines’ Ssh daemons are queried randomly for
their public machine keys, as outlined in Section 5.2.

Introduction of other user machines can be done automatically, simply by
logging into them from a NAS machine, using

-o "StrictHostKeyChecking ask"

as an option, and responding, when asked, that the new host key should be
accepted. Machines that have multiple names or IP addresses can be contacted
multiple times. The user can also contact each machine once, and then manually
edit the ˜/.ssh/known hosts file so the first white-space delimited field of each
machine’s line contains a comma delimited list of all its fully qualified domain
names, all its /etc/resolv.conf supported nicknames, and all its IP addresses.

RSA introduction must be done manually by the user.

Machine Key Pair Creation

Generally, the Ssh build process will create a machine key pair if one doesn’t
already exist in etc/ssh host key1 and etc/ssh host key.pub. Ssh host key must
be owned by root and be readable only by root because it cannot be encrypted.
It has to be in cleartext so sshd can read it when needed. If, for some reason,
a machine must be given a new key pair, the ssh-keygen utility is available for
the purpose.

Before manually adding a machine public key to a known hosts file, two
things should be done. First, the comment field should be removed. Second,
a comma-separated list of all the machine’s IP addresses and names (including
abbreviated names as supported by /etc/resolv.conf) should be added at the
beginning and set off with a blank.

User Key Pair Creation

User key pair creation is not a part of the default Ssh build process. In order
to take advantage of the Ssh authentication agent and RSA authentication, the
user must create a personal Ssh key pair, by using ssh-keygen. The user must
add the public key to the file, ˜.ssh/authorized keys, on any machine he wishes
to use. The user must then install the private key, on every machine he logs
into directly, as the file ˜/.ssh/identity. It is critically important that the user
tell ssh-keygen to encrypt his private key, and that it be kept only in files with
0400 permission, owned by the user.

Logging In Remotely

The rlogin helper script can be used, or the ssh utility can be used directly.
There should be no request for the user’s password because introduction should

22

D
R

A
FT

have enabled RhostsRSA authentication.

The rlogin helper script will handle the necessary “bounce” to a hidden host
without user intervention, once the user’s ˜/.hidden.hosts file is configured.

Remote Execution

The rsh helper script can be used, or the ssh utility can be used directly. There
should be no request for the user’s password because introduction should have
enabled RhostsRSA authentication.

The rsh helper script will handle the necessary “bounce” to a hidden host
without user intervention, once the user’s ˜/.hidden.hosts file is configured.

Port Forwarding

The rlogin or rsh helper scripts can be used, or the ssh utility can be used di-
rectly. There should be no request for the user’s password because introduction
should have enabled RhostsRSA authentication.

Both helper scripts will handle the necessary “bounce” to a hidden host
without user intervention, once the user’s ˜/.hidden.hosts file is configured.

Enciphered File Transfer

The rcp helper scripts can be used, or the scp utility can be used directly.

The rcp helper script will handle the necessary “bounce” to a hidden host
without user intervention, once the user’s ˜/.hidden.hosts file is configured. Di-
rect scp users will have to execute the compound command, “ssh bastion ssh
destination scp source sink” in order to “bounce.”

Cleartext File Transfer

The ftp helper script can be used, and is highly recommended, since direct
usage of ssh and ftp utilities can be tricky. The Ssh enciphered port forwarding
capability must be used to protect the FTP protocol’s command channel. This
involves executing ssh in the background while executing ftp in the foreground.

The ftp helper script will handle the necessary “bounce” to a hidden host
without user intervention, once the user’s ˜/.hidden.hosts file is configured. To
“bounce,” direct users will have to put a compound ssh command in the back-
ground, run ftp in the foreground, and manage a race condition.

Reversed Operations

All operations work equally well when reversed. Operations launched from
hidden hosts, targeting the user’s machine don’t even require a “bounce.”

23

D
R

A
FT

4.3 MacOS

While Macintoshes will not have all the capabilities of Unix machines in the
cleartext password free environment, it is important that at least the basic
capabilities to remotely log in and to transfer files be preserved. Additionally,
as many more of the Unix machine’s capabilities as possible should be supported.
Individual issues are outlined below:

Introduction

NiftyTelnet doesn’t support RhostsRSA authentication, so machine introduc-
tion is meaningless. RSA introduction must be done manually by the user.

Machine Key Pair Creation

NiftyTelnet doesn’t support RhostsRSA authentication, so machine key pair
manufacture wouldn’t make much sense. It doesn’t do it.

User Key Pair Creation

NiftyTelnet cannot create user key pairs. It can accept a user key pair created
on another machine. The MacOS version of F-Secure can do user key pair
generation.

Logging In Remotely

NiftyTelnet permits the user to log into any machine that is not hidden.
To reach a hidden host, the user must first log into a bastion and then log

into the destination from the bastion.

Remote Execution

NiftyTelnet permits the user to execute commands remotely on any machine
that is not hidden.

To reach a hidden host, the user must first log into a bastion and then
execute remote commands from the bastion.

Port Forwarding

NiftyTelnet doesn’t do port forwarding at all. The MacOS version of F-Secure
does X11 port forwarding and arbitrary port forwarding, but it doesn’t do au-
thentication agent port forwarding. Neither NiftyTelnet nor F-Secure supports
authentication port forwarding because they have no authentication agents and
they don’t support logging into MacOS from some other machine (which might
have an agent). Users with a requirement for X11 or arbitrary port forwarding
should consider adding the version of F-Secure recommended in Section 3.4 to
their machines.

24

D
R

A
FT

To reach a hidden host, the user must first log into a bastion and then
execute remote commands from the bastion.

Enciphered File Transfer

NiftyTelnet supports scp.
To exchange files with a hidden host, users will have to log into the bastion

and use its /nobackup file system as a staging area. Scp can be used for the
transfer between the user’s Mac and the bastion host. To do the transfer between
the bastion and the hidden host, the user can log into the bastion and do the
usual Unix command from there. As the last step, the user should delete the
temporary file from /nobackup.

Cleartext File Transfer

Users will be able to do Unix cleartext file transfer between the NAS destination
machine and the /nobackup file system on a bastion host. OPIE-enabled Fetch
can be used for the transfer between the user’s Mac and the bastion. Finally,
remote execution should be used to delete the temporary file from /nobackup.

Reversed Operations

NiftyTelnet doesn’t support the equivalent of a Unix daemon, so there is nothing
for a distant host to contact. Reversed operations are therefore impossible.

4.4 Windows 95/98/NT/2K

While Windows machines will not have all the capabilities of Unix machines in
the cleartext password free environment, it is important that at least the basic
capabilities to remotely log in and to transfer files be preserved. Additionally, as
many more of the Unix machine’s capabilities as possible should be supported.
Individual issues are outlined below:

Introduction

TTSSH doesn’t provide a version of sshd, so RhostsRSA introduction must be
done manually by the user. RSA introduction must also be done manually by
the user.

Machine Key Pair Creation

TTSSH doesn’t do machine key pair creation, but it will use a key pair created
under Unix, by ssh-keygen. Unlike most other implementations of Ssh, TTSSH
requires that the machine private key be encrypted (a reasonable measure under
Windows 95/98).

25

D
R

A
FT

User Key Pair Creation

TTSSH does not create user key pairs. It can accept a user key pair created on
another machine. If that other machine runs Unix, the ASCII NL character at
the end of the public key file will have to be converted to a CR and NL sequence.
The private key file is treated as a binary file, so end-of-line conversion is not
required.

Logging In Remotely

TTSSH will permit the user to log into any machine that is not hidden.
To reach a hidden host, the user must first log into a bastion and then log

into the destination from the bastion.

Remote Execution

TTSSH does not support remote execution (no equivalent of Unix rsh). Instead,
one must use remote login.

To reach a hidden host, the user must first log into a bastion and then
execute remote commands from the bastion.

Port Forwarding

TTSSH supports both X11 port forwarding and arbitrary port forwarding. It
does not support authentication port forwarding because it doesn’t support an
authentication agent and it doesn’t support logging into Windows from some
other machine (which might have an agent).

To reach a hidden host, the user must first log into a bastion and then
execute remote commands from the bastion.

Enciphered File Transfer

TTSSH doesn’t support scp. Enciphered file transfer is therefore not supported
from Windows.

Cleartext File Transfer

TTSSH and LeechFTP can work together to support an enciphered FTP com-
mand channel and a cleartext data channel. The effect is to lodge machine
selection with TTSSH, and to specify the same connection to LeechFTP all the
time, regardless of the desired FTP server host.

The user’s login preference under TTSSH must be set to include forwarding
of local port 21 to the well known ftpd port (21) on the login destination machine.
To reach a hidden host, the user must first log into a bastion and then execute
remote commands from the bastion.

Once all the preferences are set up, it is only necessary to log into the FTP
target machine before making the FTP connection, and to tell LeechFTP to
connect to the the local machine (but not to localhost) instead of connecting

26

D
R

A
FT

to the remote machine. The LeechFTP bookmark feature is the easiest way to
give it the required direction.

Reversed Operations TTSSH doesn’t support the equivalent of a Unix
daemon, so there is nothing for a distant host to contact. Reversed operations
are therefore impossible.

4.5 Untrusted Machines

An untrusted machine is any machine not administered by someone the user
knows and trusts. For purposes of this plan, the user is assumed to trust NAS
system administration. Authentication from untrusted machines must be done
through OPIE. The classic example of the untrusted machine is a courtesy
workstation at a conference. Some colleague’s machine in another system ad-
ministration domain also fits the description. Individual issues are outlined
below:

Introduction

OPIE introduction consists of the user generating his first set of one-time pass
phrases. That must be done in advance, must be done separately on each bastion
host, and must be done from within an Ssh login session.

Machine Key Pair Creation

This operation is meaningless in the context of an untrusted machine.

User Key Pair Creation

This operation is meaningless in the context of an untrusted machine.

Logging In Remotely

The user must log into a bastion first, using OPIE, then log into the destination
host. The two-stage process is required whether the destination is hidden or
not. The user will be warned at login that he must not use any utility requiring
a password since the session is subject to eavesdropping. The Ssh login from
the bastion to the destination host must use RhostsRSA authentication, as
that is the only way to avoid exposing passwords in this circumstance. OPIE’s
password-sequence generating utility is immune to eavesdropping, so it can be
used.

Remote Execution

The user must log into a bastion first, using OPIE, then execute remote com-
mands on the destination host, using RhostsRSA authentication.

27

D
R

A
FT

Enciphered File Transfer

OPIE doesn’t encipher anything; it only accomplishes secure authentication over
insecure channels, using an insecure local machine. Enciphered file transfer is
therefore not supported from untrusted machines.

Cleartext File Transfer

Users will be able to do Unix cleartext file transfer between the NAS destination
machine and the /nobackup file system on a bastion. The user can simply use
the FTP client program on the untrusted machine to transfer files between the
untrusted machine and the /nobackup file system on a bastion. Finally, remote
execution should be used to delete the temporary file from /nobackup.

Reversed Operations

Only the daemons, telnetd, rlogind, rexecd, rshd, and ftpd are going to be dis-
abled or restricted on NAS machines. The user client programs themselves,
telnet, rlogin, rexec, rsh, and ftp will be untouched. They can all be used to
contact untrusted machines. To do so will place the user’s password on the un-
trusted machine at risk of eavesdropping, but that password is already at risk
by virtue of being presented to an untrusted machine. The moral is don’t use
the same password both for a NAS machine and for an untrusted machine.

28

D
R

A
FT

Chapter 5

The Tasks to be Performed

Many tasks must be completed before Ssh and OPIE can support users’ needs
alone, without cleartext passwords. The following sections cover them one at a
time. The Gantt chart in Figure 5.7 on page 40 associates each task with its
section number.

5.1 Install Ssh Protocol 1.5 Everywhere

Ssh utilities will have to be installed on all Unix, MacOS, and Windows ma-
chines. For Unix machines, and wherever else possible, Ssh daemons must also
be installed. The latest release is 1.2.27.

Unix Ssh is available from the main distribution site in Finland1. It is open
source software, usable by all. It supports all forms of Ssh access. Configure it.
Build it. Install it.

Publicly available NiftyTelnet supports Ssh logins and enciphered file tre-
ansfer on the Macintosh. Un-enciphered file transfer between the NAS bastion
hosts (Bouncer and Bruiser) and MacOS can be done using NiftyTelnet along
with Fetch 3.0.3. Fetch is also freely available. NiftyTelnet does not support
port forwarding. The commercial product, F-Secure version 1.1, build 15 be
added to provide that capability.

TTSSH on Windows supports Ssh logins and port forwarding. It has no
scp work-alike. Un-enciphered file transfer between Windows and any NAS
machine is handled by a combination of TTSSH and LeechFTP version 1.3,
build 1.3.1.207. LeechFTP is freely available.

29

D
R

A
FT

Each ssh client configuration value is defined for a given target

host by its first appearance across all configuration sources.

First come configuration blocks for specific hosts; ...

... then we have configuration blocks for wild-carded hosts, ...

Host *.boeing.com

Compression no

Host *.arc.nasa.gov
Compression no

Host *.larc.nasa.gov
Compression no

Host *.gsfc.nasa.gov

Compression no

Host *.nas.nasa.gov

Compression no

Host *.*
Compression yes

... followed, ultimately, by the ultimate wild-carded host.
Parameters that are allowed to default are listed as comments.

Host *

BatchMode no
Cipher blowfish

ClearAllForwardings yes

Compression no
CompressionLevel 6

ConnectionAttempts 1
EscapeChar ~

FallBackToRsh yes

ForwardAgent yes
ForwardX11 yes

GatewayPorts yes
GlobalKnownHostsFile /usr/local/etc/ssh_known_hosts

HostName *
IdentityFile ~/.ssh/identity
KeepAlive yes

KerberosAuthentication no
KerberosTgtPassing no

LocalForward
NumberOfPasswordPrompts 1
PasswordAuthentication yes

PasswordPromptHost yes
PasswordPromptLogin yes

Port 22
ProxyCommand /usr/local/bin/ssh -p %p %h

RemoteForward
RhostsAuthentication yes
RhostsRSAAuthentication yes

RSAAuthentication yes
StrictHostKeyChecking yes

TISAuthentication no
UsePrivilegedPort yes
User

UserKnownHostsFile ~/.ssh/known_hosts
UseRsh no

XAuthLocation /usr/X11R6/bin/xauth

Figure 5.1: Model Ssh system-wide client configuration file

30

D
R

A
FT

This is the Ssh daemon systemwide configuration file. All

parameters are listed in alphabetical order. Parameters that are
allowed to default are listed as comments.

The philosophy of this configuration is that the client process
cares only about fulfilling the user’s request and the server is

responsible for maintaining security.

Example:

The client configuration file permits Rhosts authentication but
the server configuration file forbids it.

AllowGroups *
AllowHosts *
AccountExpireWarningDays 14

AllowSHosts *
AllowTcpForwarding yes

AllowUsers *
CheckMail yes
DenyGroups

DenyHosts
DenySHosts

DenyUsers
FascistLogging no

ForcedEmptyPasswdChange no
ForcedPasswdChange yes
HostKey /usr/local/etc/ssh_host_key

IdleTimeouttime
IgnoreRhosts no

IgnoreRootRhosts no
KeepAlive yes

KerberosAuthentication no

KerberosOrLocalPasswd no
KerberosTgtPassing no

KeyRegenerationInterval 3600
ListenAddress 0.0.0.0

LoginGraceTime 600
PasswordAuthentication yes
PasswordExpireWarningDays 14

PermitEmptyPasswords no
PermitRootLogin no

PidFile /var/run/sshd.pid
Port 22
PrintMotd yes

QuietMode no
RandomSeed /usr/local/etc/ssh_random_seed

RhostsAuthentication no
RhostsRSAAuthentication yes

RSAAuthentication yes
ServerKeyBits 768

SilentDeny no

StrictModes yes
SyslogFacility AUTH

TISAuthentication no
Umask 077

X11Forwarding yes

X11DisplayOffset 10
XauthLocation /usr/X11R6/bin/xauth

Figure 5.2: Model Ssh server daemon configuration file

31

D
R

A
FT

bouncer.nas.nasa.gov

bruiser.nas.nasa.gov

Figure 5.3: Model Ssh shosts.equiv file.

#!/bin/sh

$XConsortium: Xsession /main/10 1995/12/18 18:21:28 gildea $

redirect errors to a file in user’s home directory if we can

for errfile in "$HOME/.xsession-errors" "${TMPDIR-/tmp}/xses-$USER" "/tmp/xses-$USER"

do

if (cp /dev/null "$errfile" 2> /dev/null)

then

chmod 600 "$errfile"

exec > "$errfile" 2>&1

break

fi

done

case $# in

1)

case $1 in

failsafe)

exec ssh-agent xterm -geometry 80x24-0-0

;;

esac

esac

startup=$HOME/.xsession

resources=$HOME/.Xresources

if [-f "$startup"]; then

exec ssh-agent "$startup"

else

if [-f "$resources"]; then

xrdb -load "$resources"

fi

exec ssh-agent xsm

fi

Figure 5.4: Modified Xdm session start-up file

32

D
R

A
FT

Option Reason

--prefix=/usr/prg Avoids NFS-mounted file systems
--with-x Enables X11 forwarding

--without-idea IDEA has intellectual property rights problems
--with-des Required by regulation for data encryption

--with-libwrap Incorporates TCP wrappers
--without-rsaref The RSA patent has expired

Table 5.1: Required Unix Ssh Configuration Options

#

If we are logging in from a secure port or through ssh, and no ancestor

is an ssh-agent, morph into ssh-agent and spawn another login shell.

#

if (! $?SSH_AUTH_SOCK) then

/usr/bin/tty | /usr/bin/grep -q ’tty[pq]’

if ($status || $?SSH_CLIENT) then

if (-x /usr/local/bin/ssh-agent) then

exec /usr/local/bin/ssh-agent $SHELL -l

endif

echo ’**’

echo "* WARNING: SSH-AGENT WON’T START; SSH MAY BE DAMAGED *"

echo ’**’

else

echo ’**’

echo ’* WARNING: INSECURE CONNECTION; USE NO PASSWORDS *’

echo ’**’

endif

endif

Figure 5.5: Addition to system C-Shell startup

33

D
R

A
FT

#

If we are logging in from a secure port or through ssh, and no ancestor

is an ssh-agent, morph into ssh-agent and spawn another login shell.

#

if [-z "$SSH_AUTH_SOCK"]; then

/usr/bin/tty | /usr/bin/grep -qv ’tty[pq]’

if [$? -eq 0 -o -n "$SSH_CLIENT"]; then

[-x /usr/local/bin/ssh-agent] && \

exec /usr/local/bin/ssh-agent $SHELL

echo ’**’

echo "* WARNING: SSH-AGENT WON’T START; SSH MAY BE DAMAGED *"

echo ’**’

else

echo ’**’

echo ’* WARNING: INSECURE CONNECTION; USE NO PASSWORDS *’

echo ’**’

fi

fi

Figure 5.6: Addition to system Bourne Shell startup

5.1.1 Unix Configuration

Ssh Unix configuration issues fall into several categories. Installation location
is important, particularly on machines that use NFS. Installation options are
important, for reasons of proper function, as well as for legal and regulatory
reasons. Configuration options are important so the whole package will work
well across the NAS. Finally, Ssh can be made more user friendly if its own
configuration files are modified.

There are many configuration options one can specify when building Ssh.
For technical, regulatory, and legal reasons, the defaults are not always the
right choice. The non-default options shown in Table 5.1 should be used.

A model Ssh client utility configuration file, etc/ssh config2, is shown in Fig-
ure 5.1. It may need to be customized to each host. The “Host” blocks, for
example, are appropriate to machines on the NAS net, but not necessarily to
others. A model Ssh daemon configuration file, etc/sshd config, is shown in
Figure 5.2. It too may need to be customized to each host. The value of Glob-
alKnownHostsFile, for example, may have to be changed from the Ssh default.
A model Ssh host equivalency file, etc/shosts.equiv, is shown in Figure 5.3. It
is appropriate only for NAS systems other than the bastion hosts. Its purpose
is to insure that users who log into a bastion host using OPIE (which leaves
their session in clear text) are not then asked for a password when they log into
other NAS machines. It ensures that such subsequent logins over Ssh will use

1The file is to be found at ftp.funet.fi. ftp://ftp.funet.fi/pub/unix/security/login/

ssh-1.2.27.tar.gz Its MD5 checksum is c22bc000bee0f7d6f4845eab72a81395. There is a
separate PGP signature file from “Ssh distribution key <ylo@cs.hut.fi>,” a 1024-bit key with
the PGP fingerprint, C8 90 C8 5A 08 F0 F5 FD 61 AF E6 FF CF D4 29 D9.

2The leading part of the path name is uncertain. See footnote 1 on page 19.

34

D
R

A
FT

RhostsRSA authentication.
Some non-Ssh configuration file changes are also appropriate for machines

that have had Ssh installed. One type of change enables usage of ssh-agent

for RSA authentication. The other lets the user know when his session is not
protected by encryption.

The Ssh documentation says that ssh-agent does not have to be the parent
of a user’s session. Don’t believe it. The alternative to parenthood is for the
user’s session to start a copy of ssh-agent at the beginning (say in ˜/.cshrc),
and then to kill it as the session dies (say in ˜/.logout). This sort of mea-
sure doesn’t always work, and can therefore cause a slow build-up of orphaned
copies of ssh-agent. One should make ssh-agent the parent of each user’s ses-
sion. To do that, changes have to be made to the Xdm user session start-up
file, X11R6/lib/X11/xdm/Xsession, and to the system-wide C-Shell and Bourne
Shell start-up scripts.

The basic change that must be made to Xsession is to find all instances
of exec and replace them with “exec ssh-agent.” That has already been done
in Figure 5.4. For systems that don’t use Xsession, a shell script that execs

ssh-agent to run the effective session client will be required. For the system-
wide shell start-up scripts, things are a bit more complicated. It is important
not to start ssh-agent if the user is connected through an insecure port. If
the user’s connection is insecure, these start-up script additions warn him. If
secure, they turn the current shell into ssh-agent and start a new shell. The
C-Shell version is shown in Figure 5.5, and the Bourne Shell version is shown in
Figure 5.6. Some modification of the examples will probably be required. They
were written and tested under FreeBSD, and such things as the test whether
the controlling terminal is a pseudo tty will probably have to be customized.

Status: Not yet complete. See the schedule.

5.1.2 Personal Computer Configuration

The appropriate software must be installed on all NAS supported personal com-
puters not already configured as described in Sections 3.4 and 3.5.

Status: Not yet complete. See the schedule.

5.2 Collect Public Machine Keys Automatically

In any public key cryptography system, key distribution integrity is a problem.
You can’t just accept keys as offered, or someone will be able to masquerade as
someone else, merely by offering a public key that claims to be from the victim.

It is also true that when Ssh becomes the only means of connecting to NAS
machines, the amount of disk space on multi-user machines devoted to the public
keys of other multi-user machines can grow as mn

2 where there are m users and
n multi-user machines, if all public machine keys go into ˜/.ssh/known hosts.

35

D
R

A
FT

The solution to both problems is for NAS automatically to maintain the
master host public keys file, etc/ssh known hosts2.

The necessary utility must:

1. Query the Ssh daemons on all machines on all NAS subnets plus the
daemons on those machines listed on scientific users’ account request forms
as the Unix machines from which they would make first Ssh contact with
NAS,

2. Begin each session of queries at random times,

3. Perform the queries in random order, and

4. Leave the resulting file of Ssh machine public keys in a central location3.

The file is necessary both to provide secure collection of public keys, and to
prevent an explosion of entries in every user’s ˜/.ssh/known hosts file. Queries
must be done randomly to make it as difficult as possible for a cracker to control
a victim’s IP address long enough to respond to us with a bogus public key for
that IP address.

Status: The Local Area Network Group has completed this task, but see Sec-
tion 5.3.

5.3 Check Users’ Ssh Machine List

The first attempt to get a list of machines specified on scientific users’ account
request forms made it clear that a significant fraction of resulting database en-
tries weren’t useful. In some cases it seemed that the person filling out the
account request form didn’t get the idea and entered some general description
instead of a machine name. In other cases, there could have been a typograph-
ical error while transferring information from the forms to the data base. The
original list also contained only entries from account request forms received at
the Next Operational Period (NOP) boundary, in the fall of 1999. Whatever
the exact nature of the inaccuracy, all accounts with invalid information need
follow-up, as do accounts approved since NOP.

Status: Not yet complete. See the schedule.

5.4 Distribute Helper Scripts

For those who are used to rlogin, rsh, rcp, and ftp, use of the ssh and scp

utilities can seem alien. Worse, use of ftp through an enciphered Ssh command
channel is tricky. These inconveniences and difficulties only become worse when

3Currently, that central location is on marcy.nas.nasa.gov in a file named
/usr/nas/generic/security/etc/ssh known hosts.

36

D
R

A
FT

it is necessary to “bounce” a connection through a bastion host. To make life
easier for the users at no loss of security, scripts will be written that accept r

command options (and ftp options) as well as appropriate Ssh options. They will
also allow automatic bastion host handling, so the users will not have to contend
with either inconvenience. Naturally, direct Ssh usage will also be possible.

When the helper script package is complete, it will be made available through
the NAS Computer Security web page. It may also be installed in /usr/nas/bin.
On a machine for which that is not possible, a user can still install the package
in his own bin directory, and put that directory first on his search path.

Status: Not yet complete. See the schedule.

5.5 Install Modified OPIE on Bastions

OPIE has one serious problem for NAS use: it requires that the user create
his initial set of one-time pass phrases from the system console on the authen-
ticating machine, Bruiser or Bouncer in our case. It is unacceptable to have
to usher users into room 133 to permit them to create their first set of one-
time passwords. OPIE must be modified to accept an Ssh connected session
as being secure enough to permit key generation. That will require a software
modification.

The modifications will first be the subject of a code review. The code changes
will then be made and OPIE will be built on Marcy. The first installation and
tests will be done on Bruiser. After a decent interval of successful use by staff,
the modified software will be installed on Bouncer, and will be advertised to the
users.

Status: Not yet complete. See the schedule.

5.6 Educate Users

User education will take several forms. There will be NAS Computer Secu-
rity web page upgrades. There will be a class aimed at workstation system
administrators. There will be user familiarization classes.

The NAS Computer Security web page will get several additions:

• A browsable version of this plan will be available.

• There will be up-to-date how-to-get-it references for Unix, Mac and Win-
dows versions of Ssh.

• It will be possible to download a copy of the helper scripts.

• Copies of slides for all classes will be available.

• There seems to be only one flawed tutorial book[1] on the market covering
Ssh. Nonetheless, the web page should identify it.

37

D
R

A
FT

A presentation should be made, explaining the configuration changes outlined
in Section 5.1.1, for the benefit of Unix system administrators. Three more
presentations for users are required. The first should outline the basics of Ssh
usage. The second should cover installation and use of the helper scripts. The
third should explain OPIE usage.

Status: Not yet complete. See the schedule.

5.7 Make Administration Utilities Work With

Ssh

Any NAS administration tools that depend upon cleartext passwords, or the
BSD r commands must be changed to work with Ssh and to work without
rlogind, telnetd, rshd, rexecd, and direct access to ftpd.

5.7.1 PCP Modification for Ssh

Piped CoPy (PCP) authentication now involves /etc/hosts.equiv files. Some
modifications were made to it in the past to make it ready to use Ssh authenti-
cation instead. The task needs to be completed.

Status: Not yet complete. See the schedule.

5.7.2 PBS Configuration for Ssh

The Portable Batch System (PBS) has been capable of transferring files through
the services of rcp, or through scp with RhostsRSA authentication since re-
lease 1.1.12. Before turning off access to rcp, it is important to make sure that
all PBS servers across all NAS-supported machines are using scp and not rcp.

Status: Not yet complete. See the schedule.

5.8 Disable Cleartext Passwords

When all other tasks have been completed, actually turning off access by clear-
text password will be a very small task. It consists of five steps conducted on
all supported Unix machines:

1. Make sure that the remote login daemon, rlogind, is disabled and will not
run. Preferably, its executable file should be removed.

2. Make sure that the remote terminal daemon, telnetd, is disabled and will
not run. Preferably, its executable file should be removed.

3. Make sure that the remote shell daemon, rshd, is disabled and will not
run. Preferably, its executable file should be removed.

38

D
R

A
FT

4. Make sure that the remote execution daemon, rexecd, is disabled and will
not run. Preferably, its executable file should be removed.

5. Configure TCP Wrapper to permit access to the FTP daemon, ftpd, only
from the local machine’s actual network IP addresses.

6. Configure NAS Computer Security scans to detect and report service at
the well-known ports for rlogind, telnetd, rshd, rexecd, and ftpd.

That is all that needs to be done as the last step.

Status: Not yet complete. See the schedule.

5.9 Schedule

The schedule for the succession of tasks leading up to the elimination of cleartext
passwords is shown in Figure 5.7. Major tasks are marked with the numbers of
the sections that explain them.

39

D
R

A
FT

Figure 5.7: Schedule

40

D
R

A
FT

Appendix A

ISO 9001 Considerations

Cleartext password elimination involves the delivery of software to NAS Systems
division customers. ISO 9001 requirements therefore come into play.

A.1 Software Project Characterization

The Qualitative method[9, Section 6.2.1] of characterization is the one used
for this project. It classifies a project along three dimensions, risk, cost, and
organizational complexity. Cleartext password elimination is a Low Risk, Very

Low Cost, Simple project. The rationale for this classification is outlined below.

A.1.1 Software Project Risk Classification

By the Qualitative method, software must be placed into one of four risk
categories[9, Table 1]. High Risk software can kill, maim or cause significant
property damage if it fails. Medium Risk software can cause significant property
damage or embarrassment to NASA by failing. Failure of Low Risk software will
only cause lost user time or lost computer time, or may take significant time to
fix. Negligible Risk software is likely to cause little lost user or computer time
if it fails.

This project to eliminate the use of cleartext passwords with NAS computers
is Low Risk. There is no possibility of injury or property damage that could flow
from the project, and the only potential for embarrassment to NASA would be
a high-profile computer security compromise, which is no more likely with this
project than it would be without — almost certainly less likely.

A.1.2 Software Project Cost Classification

There are six potential cost categories[9, Table 2] into which a project can be
placed: Extremely High Cost (whose budget requires higher than Center Direc-
tor approval), Very High Cost (whose budget must be approved by the Center
Director), High Cost (whose budget requires Directorate approval), Medium

41

D
R

A
FT

Cost (requiring a Division Chief’s budget approval), Low Cost (requiring the
approval of a responsible manager below Division Chief), and Very Low Cost

(whose budget is within the discretion of the software project manager).
This project to eliminate the use of cleartext passwords is Very Low Cost.

It does not require the outright purchase of anything. It requires the full-time
efforts of the software project manager for a couple of months, and intermittent
cooperation from others in the Division over the same few months.

A.1.3 Organizational Complexity Classification

There are three potential complexity categories[9, Table 3] into which a project
can be placed: Very Complex (for projects involving several organizations or
several locations), Complex (for projects involving no more than two organiza-
tions at no more than two locations), and Simple (for projects involving only a
single organization at a single location).

The project to eliminate the use of cleartext passwords is Simple. The
sole developing organization is the NAS Systems Division and the sole locus of
development is NASA Ames Research Center.

A.2 Selected Development Controls

Based upon the project characterization as Low Risk, Very Low Cost, and Sim-

ple, the following project controls were selected.

A.2.1 Development Approach

The chosen development approach[17, Section 6.3] is Single-Release Life Cycle.
The user interfaces are well understood and there is little likelihood of demand
for additional features requiring subsequent releases.

A.2.2 Documentation Plan

There will be an installation guide[17, Section 6.4.1] provided with the helper
scripts (in the form of a README file) The helper scripts are the only parts
of this project that are to be developed from scratch. Installation guides are
already available for the project deliverables that are only to be configured or
that are to be modified.

Design of the helper scripts will be documented[17, Section 6.4.2] through
comment lines in the code. There will also be a Unix man page for each script.
The requirements are outlined in Chapter 2 of this plan.

A.2.3 Maintenance Plan

Software maintenance for the OPIE modification and for the helper scripts
will be provided by the author as problems are identified on the e-mail lists,
ssh-admin@nas.nasa.gov and ssh-users@nas.nasa.gov. Maintenance of the

42

D
R

A
FT

configuration changes required will be provided by the system administrators
involved. Maintenance for the non-source freeware components of the project
will be provided through request to the authors.

A.2.4 Software Configuration Control

A master copy of each locally developed or open-source component of this
project, and a machine-readable copy of this document will be maintained on
the NAS Systems Division mass storage machine1, in the directory structure
under ˜tweten/Ssh Project.

A.2.5 Change Request Tracking

Change request tracking will be done informally. Users will be invited to send
requests to one of the mailing lists, ssh-admin@nas.nasa.gov or ssh-users@

nas.nasa.gov.

A.2.6 Required Reviews

The Project Plan review and the Requirements review will be conducted infor-
mally by Line Management[17, Section 6.8.1]. The combined attendee list and
minutes of this review will be treated as a Quality Record[18].

A.2.7 Replication, Delivery, and Installation

The helper scripts will be available from the NAS Computer Security web page.
That page will also contain references to all open-source and free components.
Any commercial alternatives to the open-source or free components identified
in this document that are desired by any user organization will be the financial
responsibility of that organization. Other pieces, such as the OPIE modifications
will not actually be delivered to customers.

1Lou.nas.nasa.gov, as of this writing.

43

D
R

A
FT

44

D
R

A
FT

Bibliography

[1] Anne Carasik. UNIX Secure Shell. McGraw-Hill, 1999.

[2] Joan Daemen, René Govaerts, and Joos Vandewalle. A hardware design
model for cryptographic algorithms. In ESORICS 92, Proceedings of the

Second European Symposium on Research in Computer Security, pages 419–
434. Springer-Verlag, 1992.

[3] Joan Daemen, René Govaerts, and Joos Vandewalle. Weak keys for IDEA.
In Douglas R. Stinson, editor, Advances in Cryptology—CRYPTO ’93, vol-
ume 773 of Lecture Notes in Computer Science, pages 224–231, Santa Bar-
bara, CA, August 22–26, 1993. Springer-Verlag, 1994.

[4] Tim Dierks, Philip L. Karlton, Alan O. Freier, and Paul C. Kocher. The
TLS protocol version 1.0. RFC 2246, Internet Engineering Task Force,
January 1999. Available as http://www.ietf.org/rfc/rfc2246.txt.

[5] Whitfield Diffe and Martin E. Hellman. Exhaustive cryptanalysis of the
NBS data encryption standard. Computer, 10(6):74–84, June 1977.

[6] Cracking DES: Secrets of Encryption Research, Wiretap Politics, and Chip

Design. Electronic Frontier Foundation, San Francisco, 1998.

[7] Neil Haller. The S/KEY one-time password system. RFC 1760, Internet
Engineering Task Force, February 1995. Available as http://www.ietf.

org/rfc/rfc1760.txt.

[8] Martin E. Hellman. DES will be totally insecure within ten years. IEEE

Spectrum, 16(7):32–39, July 1979.

[9] W. Henry. Project management for the design, development, and main-
tenance of software. SLP 53.ARC.0004.1, NASA Ames Research Cen-
ter, May 18, 1999. Available as http://ace.arc.nasa.gov/cgi-bin/

postdoc/get?url_id=7132&ext=pdf.

[10] John T. Kohl, B. Clifford Neuman, and Theodore Y. Ts’o. The evolution of
the Kerberos authentication service. In EurOpen Conference Proceedings,
pages 295–313, Tromsø, Norway, May 1991.

45

D
R

A
FT

[11] Xuejia Lai. On the Design and Security of Block Ciphers, volume 1 of ETH

Series in Information Processing. Hartung-Gorre Verlag, Konstanz, 1992.

[12] James L. Massey and Xuejia Lai. Device for the conversion of a digital
block and use of same. U.S. Patent #5,214,703, May 25, 1993.

[13] James Lee Massey and Xuejia Lai. Device for converting a digital block
and the use thereof. International Patent PCT/CH91/00117, November 28,
1991.

[14] Daniel L. McDonald, Randall J. Atkinson, and Craig Metz. One time pass-
words in everything (OPIE): Experiences with building and using stronger
authentication. In Fifth USENIX UNIX Security Symposium, pages 177–
186, Salt Lake City, UT, June 5–7, 1995. USENIX Association. Also avail-
able as http://www.usenix.org/publications/library/proceedings/

security95/mcdonald.html.

[15] Robert McLaughlin. Yet another machine to break DES. Cryptologia,
XVI(2):136–144, April 1992.

[16] Willi Meier. On the security of the IDEA block cipher. In Tor Helleseth,
editor, Advances in Cryptology—EUROCRYPT ’93, Workshop on the The-

ory and Application of of Cryptographic Techniques, volume 765 of Lecture

Notes in Computer Science, pages 371–385, Lofthus, Norway, May 23–27,
1993. Springer-Verlag, 1994.

[17] G. Miyahara. Guidelines for implementing 43.ARC.0004.1. SLWI
53.ARC.0004.1.1, NASA Ames Research Center, November 29, 1999.
Available as http://ace.arc.nasa.gov/cgi-bin/postdoc/get?url_id=
10704&ext=pdf.

[18] G. Miyahara. Quality records. SLP 53.ARC.0016, NASA Ames Research
Center, June 8, 1999. Available as http://ace.arc.nasa.gov/cgi-bin/

postdoc/get?url_id=5554&ext=pdf.

[19] Data encryption standard. FIPS PUB 46-3, U.S. Department of Com-
merce, October 25, 1999. Also available as http://csrc.nist.gov/fips/
fips46-3.pdf.

[20] AO/Chief Information Officer. Security of information technology. NPG
2810.1, National Aeronautics and Space Administration, August 26,
1999. Available as http://nodis.hq.nasa.gov/Library/Directives/

NASA-WIDE/Procedures/Legal_Policies/N_PG_2810_1.html.

[21] Vincent Rijmen. Cryptanalysis and Design of Iterated Block Ciphers. PhD
thesis, Katholieke Universiteit Leuven, Belgium, October 1997. Available
through http://www.esat.kuleuven.ac.be/~rijmen/pub97.html.

46

D
R

A
FT

[22] R. L. Rivest, A. Shamir, and L. Adleman. A method of obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, February 1978.

[23] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. Cryptographic
communications system and method. U.S. Patent #4,405,829, Septem-
ber 20, 1983.

[24] B. Schneier. Description of a new variable-length key, 64-bit block cipher
(Blowfish). In R. Anderson, editor, Fast Software Encryption, Cambridge

Security Workshop Proceedings, number 809 in Lecture Notes in Computer
Science, pages 191–204, Cambridge, UK, 1994. Springer-Verlag. Also avail-
able as http://www.counterpane.com/bfsverlag.html.

[25] B. Schneier. The blowfish encryption algorithm—one year later. Dr. Dobbs

Journal, September 1995. Also available as http://www.counterpane.

com/bfdobsoyl.html.

[26] Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schiller. Kerberos:
An authentication service for open network systems. In Proceedings of the

USENIX Winter Conference, pages 191–202, Dallas, TX, January 1988.
USENIX Association. Also available as ftp://athena-dist.mit.edu/

pub/kerberos/doc/usenix.PS.

[27] Serge Vaudenay. On the weak keys of Blowfish. In Dieter Gollmann,
editor, Fast Software Encryption, Third International Workshop, num-
ber 1039 in Lecture Notes in Computer Science, pages 27–32, Cam-
bridge, UK, February 21–23, 1996. Springer-Verlag. Also available as
http://www.dmi.ens.fr/~vaudenay/pub.html#Vau96a.

[28] Wietse Venema. TCP WRAPPER: Network monitoring, access control and
booby traps. In UNIX Security III Symposium, pages 85–92, Baltimore,
MD, September 14–16, 1992. USENIX Association. Also available as ftp:
//ftp.porcupine.org/pub/security/tcp_wrapper.ps.Z.

[29] Machael J. Wiener. Efficient DES key search. In William Stallings, editor,
Practical Cryptography for Data Internetworks, pages 31–79. IEEE Com-
puter Society Press, 1996. Also available as ftp://ripem.msu.edu/pub/

crypt/docs/des-key-search.ps.

[30] Thomas Wu. The secure remote password protocol. In 1998 ISOC Network

and Distributed System Security Symposium, pages 97–111, March 1998.
Also available as ftp://srp.stanford.edu/pub/srp/srp.ps.

47

